Вычисление пределов
Криволинейный интеграл
Карта сайта

Введение в математический анализ Числовая последовательность

  Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

x1, х2, …, хn = {xn} 

 Общий элемент последовательности является функцией от n.

xn = f(n)

Таким образом последовательность может рассматриваться как функция.

Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности.

 

  Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

 {xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; …

Для последовательностей можно определить следующие операции:

 

1)      Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

2)      Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}.

3)      Произведение последовательностей: {xn}×{yn} = {xn×yn}.

4)      Частное последовательностей:  при {yn} ¹ 0.

 


На главную страницу сайта