Вычисление пределов
Криволинейный интеграл
Карта сайта

Дискретная математика Курс лекций для студентов

Основные понятия теории множеств. 

 Определение. Множеством М называется объединение в единое целое определенных различимых объектов а, которые называются элементами множества.

а ΠМ

 Множество можно описать, указав какое – нибудь свойство, присущее всем элементам этого множества.

 Множество, не содержащее элементов, называется пустым и обзначается Æ.

 Элементы системы массового обслуживания Формулировка задачи и характеристики СМО Часто приходится сталкиваться с такими ситуациями: очередь покупателей в кассах магазинов; колонна автомобилей, движение которых остановлено светофором; ряд станков, вышедших из строя и ожидающих ремонта, и т.д. Все эти ситуации объединяет то обстоятельство, что системам необходимо пребывать в состоянии ожидания. Ожидание является следствием вероятностного характера возникновения потребностей в обслуживании и разброса показателей обслуживающих систем, которые называют системами массового обслуживания (СМО).

 Определение. Если все элементы множества А являются также элементами множества В, то говорят, что множество А включается (содержится) в множестве В.

 

 

 

 

 Определение. Если А Í В, то множество А называется подмножеством множества В, а если при этом А ¹ В, то множество А называется собственным подмножеством множества В и обозначается А Ì В.

 

 Для трех множеств А, В, С справедливы следующие соотношения.

 

Связь между включением и равенством множеств устанавливается следующим соотношением:

Здесь знак Ù обозначает конъюнкцию (логическое “и”).

 


На главную страницу сайта