Вычисление пределов
Криволинейный интеграл
Карта сайта

Дискретная математика Операции над множествами

 

 Определение. Объединением множеств А и В называется множество С, элементы которого принадлежат хотя бы одномк из множеств А и В.

 Обозначается С = А È В.

 

Аппарат дифференциальных уравнений в экономике В этой главе мы рассмотрим некоторые примеры применения теории дифференциальных уравнений в непрерывных моделях экономики, где независимой переменной является время t. Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономической динамики.

 Геометрическое изображение множеств в виде области на плоскости называется диаграммой Эйлера – Венна.

 Определение. Пересечением множеств А и В называется множество С, элементы которого принадлежат каждому из множеств А и В.

 Обозначение С = А Ç В.

 

 

 

 Для множеств А, В и С справедливы следующие свойства:

 

А Ç А = А È А = А; A È B = B È A; A Ç B = B Ç A;

 

(A Ç B) Ç C = A Ç (B Ç C); (A È B) È C = A È (B È C);

 

A È (B Ç C) = (A È B) Ç (A È C); A Ç (B È C) = (A Ç B) È (A Ç C);

 

A È (A Ç B) = A; A Ç (A È B) = A;

 

Æ = А; A Ç Æ = Æ;

 

 

 Определение. Разностью множеств А и В называется множество, состоящее из элементов множества А, не принадлежащих множеству В.

 Обозначается С = А \ В.

 

 

Определение. Симметрической разностью множеств А и В называется множество С, элементы которого принадлежат в точности одному из множеств А или В.

 Обозначается А D В. 

[an error occurred while processing this directive]  

 

А D В = (A \ B) È (B \ A)

 

Определение. СЕ называется дополнением множества А относительно множества Е, если А Í Е и CЕ = Е \ A.

 

 

 Для множеств А, В и С справедливы следующие соотношения:

 

A \ B Í A; A \ A = Æ; A \ (A \ B) = A Ç B;

 

A D B = B D A; A D B = (A È B) \ (A Ç B);

 

A \ (B È C) = (A \ B) Ç (A \ C); A \ (B Ç C) = (A \ B) È (A \ C);

 

(A È B) \ C = (A \ C) È (B \ C); (A Ç B) \ C = (A \ C) Ç (B \ C);

 

A \ (B \ C) = (A \ B) È (A Ç C); (A \ B) \ C = A \ (B È C);

 

(A D B) D C = A D (B D C); A Ç (B D C) = (A Ç B) D (A Ç C);

 

A È CEA = E;  A Ç CEA = Æ; CEE = Æ; CEÆ = E; CECEA = A;

 

CE(A È B) = CEA Ç CEB; CE(A Ç B) = CEA È CEB;

 


На главную страницу сайта