Учебник по высшей математике

Математика
Контрольные
Карта

Математика в экономике

Приведем примеры использования функций в области экономики. Кривые спроса и предложения. Точка равновесия. Рассмотрим зависимости спроса D (demand) и предложения S (supply) от цены на товар Р (price). Чем меньше цена, тем больше спрос при постоянной покупательной способности населения. Обычно зависимость D от Р имеет вид ниспадающей кривой

Модель Леонтьева многоотраслевой экономики Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.

Управление и планирование являются наиболее сложными функциями в работе предприятий, фирм, служб администраций всех уровней. Долгое время они являлись монополией человека с соответствующей подготовкой и опытом работы. Совершенствование науки, техники, разделение труда усложнили принятие решений в управлении и планировании.

Альтернативный оптимум в транспортных задачах Признаком наличия альтернативного оптимума в транспортной задаче является равенство нулю хотя бы одной из оценок свободных переменных в оптимальном решении (Xопт1).Сделав перераспределение грузов относительно клетки, имеющей Δij = 0, получим новое оптимальное решение (Хопт2), при этом значение целевой функции (транспортных расходов) не изменится.

Экономический анализ транспортных задач Проведем экономический анализ задачи на конкретном примере.

До появления сетевых методов планирование работ, проектов осуществлялось в небольшом объеме. Наиболее известным средством такого планирования был ленточный график Ганта, недостаток которого состоит в том, что он не позволяет установить зависимости между различными операциями.

Математический анализ

Дифференцирование сложной функции Пусть функция х = φ(t) имеет производную в точке t0, а функция у = f(x) имеет производную в соответствующей точке x0 = φ(t0). Тогда сложная функция f[φ(t)] имеет производную в точке t0 u справедлива следующая формула: 

Интегрирование рациональных функций.  Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Вычисление длины дуги кривой

Криволинейный интеграл 2-го рода

Матрицы и операции над ними

Матрицы и определители. Понятие матриц (матрица-строка, матрица-столбец, квадратная, единичная, диагональная). Равенство матриц. Действия над матрицами (умножение матрицы на число, сложение, вычитание, умножение матриц, транспонирование матриц). Определители 2-го, 3-го и n-го порядка. Минор и алгеброическое дополнение. Обратная матрица и ее вычисление.

Алгебра и аналитическая геометрия

Многочлены

Метод Гаусса решения СЛУ. На практике чаще всего используют метод Гаусса построения решений СЛУ

Понятие о комплексных числах. Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением: При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Функции

Предел функции одной переменной Определение предела Окрестностью точки x0 называется любой интервал с центром в точке x0. Пусть функция f(x) определена в некоторой окрестности точки x0 кроме самой точки x0.

Схема исследования графика функции Приведем схему исследования поведения функции и построения ее графика.

Исследование функции на экстремум с помощью производных высших порядков

Локальный экстремум функции нескольких переменных Определение и необходимые условия существования локального экстремума Пусть функция z = f(x, y) определена на множестве {М}, а М0 (x0, у0) — некоторая точка этого множества.

Функциональные ряды. Определение. Частными (частичными) суммами функционального ряда  называются функции

novorossijsk.prostitutki-today.com - зрелые дешевые проститутки Новороссийска | zprostitutki-tveri.com/ - божественные проститутки Твери | zprostitutki-orenburga.com/ - неповторимые дешевые проститутки Оренбурга проституткииндивидуалкиШлюхи
На главную страницу сайта