На главную v-garant.ru
Функции в области экономики Модель Леонтьева Управление и планирование Транспортные задачи Экономический анализ Математический анализ Вычисление длины дуги кривой Криволинейный интеграл 2-го рода Матрицы и определители Многочлены

Учебник по высшей математике

Модель Леонтьева многоотраслевой экономики

Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.

Балансовые соотношения

Для простоты будем полагать, что производственная сфера хозяйства представляет собой п отраслей, каждая из которых производит свой однородный продукт. Для обеспечения своего производства каждая отрасль нуждается в продукции других отраслей (производственное потребление). Обычно процесс производства рассматривается за некоторый период времени; в ряде случаев такой единицей служит год.

Введем следующие обозначения:

— xi — общий объем продукции i-й отрасли (ее валовой выпуск);

— xij — объем продукции i-й отрасли, потребляемый j-й отраслью при производстве объема продукции xj;

Производная по направлению Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + Dx, y + Dy, z + Dz).

— yi — объем продукции i-й отрасли, предназначенный для реализации (потребления) в непроизводственной сфере, или так называемый продукт конечного потребления. К нему относятся личное потребление граждан, удовлетворение общественных потребностей, содержание государственных институтов и т.д.

Балансовый принцип связи различных отраслей промышленности состоит в том, что валовой выпуск i-й отрасли должен быть равным сумме объемов потребления в производственной и непроизводственной сферах. В самой простой форме (гипотеза линейности, или простого сложения) балансовые соотношения имеют вид

Уравнения (16.2) называются соотношениями баланса.

Поскольку продукция разных отраслей имеет разные измерения, будем в дальнейшем иметь в виду стоимостный баланс.

Линейная модель многоотраслевой экономики

В. В. Леонтьевым на основании анализа экономики США и период перед второй мировой войной был установлен важный факт: в течение длительного времени величины aij = xij / xj меняются очень слабо и могут рассматриваться как постоянные числа. Это явление становится понятным в свете того, что технология производства остается на одном и том же уровне довольно длительное время, и, следовательно, объем потребления j-й отраслью продукции i-й отрасли при производстве своей продукции объема xj есть технологическая константа.

В силу указанного факта можно сделать следующее допущение: для производства продукции j-й отрасли объема xj нужно использовать продукцию i-й отрасли объема aijxi, где aij — постоянное число. При таком допущении технология производства принимается линейной, а само это допущение называется гипотезой линейности. При этом числа аij называются коэффициентами прямых затрат. Согласно гипотезе линейности, имеем

Тогда уравнения (16.2) можно переписать в виде системы уравнений

Введем в рассмотрение векторы-столбцы объемов произведенной продукции (вектор валового выпуска), объемов продукции конечного потребления (вектор конечного потребления) и матрицу коэффициентов прямых затрат:

Тогда система уравнений (16.4) в матричной форме имеет вид

Обычно это соотношение называют уравнением линейного межотраслевого баланса. Вместе с описанием матричного представления (16.5) это уравнение носит название модели Леонтьева.

Уравнение межотраслевого баланса можно использовать в двух целях. В первом, наиболее простом случае, когда известен вектор валового выпуска , требуется рассчитать вектор конечного потребления  — подобная задача была рассмотрена выше (п. 16.1, пример 5).

Во втором случае уравнение межотраслевого баланса используется для целей планирования со следующей формулировкой задачи: для периода времени T (например, год) известен вектор конечного потребления  и требуется определить вектор  валового выпуска. Здесь необходимо решать систему линейных уравнений (16.6) с известной матрицей А и заданным вектором . В дальнейшем мы будем иметь дело именно с такой задачей.

Между тем система (16.6) имеет ряд особенностей, вытекающих из прикладного характера данной задачи; прежде всего все элементы матрицы А и векторов   и  должны быть неотрицательными.

Продуктивные модели Леонтьева

Матрица А, все элементы которой неотрицательны, называется продуктивной, если для любого вектора  с неотрицательными компонентами существует решение уравнения (16.6) — вектор , все элементы которого неотрицательны. В таком случае и модель Леонтьева называется продуктивной.

Для уравнения типа (16.6) разработана соответствующая математическая теория исследования решения и его особенностей. Укажем некоторые ее основные моменты. Приведем без доказательства важную теорему, позволяющую устанавливать продуктивность матрицы.

ТЕОРЕМА 16.1. Если для матрицы А с неотрицательными элементами и некоторого вектора  с неотрицательными компонентами уравнение (16.6) имеет решение  с неотрицательными компонентами, то матрица А продуктивна.

Иными словами, достаточно установить наличие положительного решения системы (16.6) хотя бы для одного положительного вектора , чтобы матрица А была продуктивной. Перепишем систему (16.6) с использованием единичной матрицы Е в виде

Если существует обратная матрица (E - А)-1 , то существует и единственное решение уравнения (16.7):

Матрица (Е — А)-1 называется матрицей полных затрат.

Существует несколько критериев продуктивности матрицы А. Приведем два из них.

Первый критерий продуктивности. Матрица А продуктивна тогда и только тогда, когда матрица (Е - А)-1 существует и ее элементы неотрицательны.

Второй критерий продуктивности. Матрица А с неотрицательными элементами продуктивна, если сумма элементов по любому ее столбцу (строке) не превосходит единицы:

причем хотя бы для одного столбца (строки) эта сумма строго меньше единицы.

Рассмотрим применение модели Леонтьева на несложных примерах.

Пример 1. В табл. 16.4 приведены данные по балансу за некоторый период времени между пятью отраслями промышленности. Найти векторы конечного потребления и валового выпуска, а также матрицу коэффициентов прямых затрат и определить, является ли она продуктивной в соответствии с приведенными выше критериями.

Решение. В данной таблице приведены составляющие баланса в соответствии с соотношениями (16.2): xij — первые пять столбцов, уi — шестой столбец, xi — последний столбец (i,j = 1, 2, 3, 4, 5). Согласно формулам (16.3) и (16.4), имеем

Все элементы матрицы А положительны, однако нетрудно видеть, что их сумма в третьем и четвертом столбцах больше единицы. Следовательно, условия второго критерия продуктивности не соблюдены и матрица А не является продуктивной. Экономическая причина этой непродуктивности заключается в том, что внутреннее потребление отраслей 3 и 4 слишком велико в соотношении с их валовыми выпусками.

Пример 2. Табл. 16.5 содержит данные баланса трех отраслей промышленности за некоторый период времени. Требуется найти объем валового выпуска каждого вида продукции, если конечное потребление по отраслям увеличить соответственно до 60, 70 и 30 условных денежных единиц.

Решение. Выпишем векторы валового выпуска и конечного потребления и матрицу коэффициентов прямых затрат. Согласно формулам (16.3) и (16.4), имеем

Матрица А удовлетворяет обоим критериям продуктивности. В случае заданного увеличения конечного потребления новый вектор конечного продукта будет иметь вид

Требуется найти новый вектор валового выпуска *, удовлетворяющий соотношениям баланса в предположении, что матрица А не изменяется. В таком случае компоненты x1, x2, х3 неизвестного вектора * находятся из системы уравнений, которая согласно (16.4) имеет в данном случае вид

В матричной форме эта система выглядит следующим образом:

или

где матрица (Е — А) имеет вид

Решение системы линейных уравнений (16.11) при заданном векторе правой части (16.9) (например, методом Гаусса) дает новый вектор * как решение системы уравнений баланса (16.10):

Таким образом, для того чтобы обеспечить заданное увеличение компонент вектора конечного продукта, необходимо увеличить соответствующие валовые выпуски: добычу и переработку углеводородов на 52,2%, уровень энергетики — на 35,8% и выпуск продукции машиностроения — на 85% по сравнению с исходными величинами, указанными в табл. 16.5.

Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно этот вопрос стал актуальным при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

Линейная модель торговли Одним из примеров экономического процесса, приводящего к понятию собственного числа и собственного вектора матрицы, является процесс взаимных закупок товаров. Будем полагать, что бюджеты п стран, которые мы обозначим соответственно x1, x2, … , xn расходуются на покупку товаров. Мы будем рассматривать линейную модель обмена, или, как ее еще называют, модель международной торговли.

Элементы теории вероятностей События, происходящие в окружающем нас мире, можно разделить на три вида: достоверные, невозможные и случайные. Достоверным относительно комплекса условий S называется событие, которое обязательно произойдет при осуществлении этого комплекса условий. Например, если гладкий желоб с лежащим внутри него тяжелым шариком наклонить, то шарик обязательно покатится по желобу в сторону уклона.

Обобщения теорем сложения и умножения Появление только одного из независимых событий Рассмотрим примеры совместного применения теорем сложения и умножения. Пусть два независимых события А1 и А2 имеют вероятности появления соответственно p1 и р2. Найдем вероятность появления только одного из этих событий


Схема исследования графика функции