Лекции по математике
Матрицы
Исследование функции
Вычисление пределов
Примеры решения задач
Двойной интеграл
Тройной интеграл
Криволинейный интеграл
Комплексные числа
Поверхностный интеграл
Интегрирование по частям
Карта сайта

 


Учебник по высшей математике

Бесконечно малые и бесконечно большие функции

Определение 1. Функция f(x) называется бесконечно малой функцией (или просто бесконечно малой) в точке x = а, если предел ее в этой точке равен нулю: f(x) = 0.

Аналогично определяются бесконечно малые при х  , х ±, х  а+ и х  а—.

ТЕОРЕМА 6. Алгебраическая сумма и произведение конечного числа бесконечно малых функций в точке а, как и произведение бесконечно малой на ограниченную функцию, являются бесконечно малыми функциями в точке а.

Определение 2. Функция f(x) называется бесконечно большой функцией в точке а (или просто бесконечно большой), если для любой сходящейся к а последовательности {хn} значений аргумента соответствующая последовательность {f(xn)} значений функции является бесконечно большой. Дифференцирование функций.

В этом случае пишут f(x) =  ( f(x) = + или f(x) = -) и говорят, что функция имеет в точке а бесконечный предел (+ или -). По аналогии с конечными односторонними пределами определены и односторонние бесконечные пределы: 

Аналогично определяются бесконечно большие функции при x, x+, x-.

Между бесконечно малыми и бесконечно большими функциями существует та же связь, что и между соответствующими последовательностями, т.е. если α(х) — бесконечно малая функция при х  а, то f(x) = 1/α(х) — бесконечно большая функция, и наоборот.

3.6. Понятие непрерывности функции

Понятие непрерывности функции является фундаментальным в математическом анализе. Сформулируем его на языке последовательности. Пусть функция f(x) определена в некоторой окрестности точки а.

Определение 1. Функция f(x) называется непрерывной в точке а, если предел этой функции и ее значение в этой точке равны, т.е.

Так как x = а, то это равенство можно переписать в следующей форме:

Определение 2. Функция f(x) называется непрерывной справа (слева) в точке а, если правый (левый) предел этой функции в точке а равен значению функции в этой точке.

Символическая запись непрерывности функции справа (слева):

Если функция f(x) непрерывна в точке а слева и справа, то она непрерывна в этой точке. 

Точки, в которых функция не является непрерывной, называются точками разрыва функции.

Рассмотрим пример точек, в которых функция не является непрерывной.

Пример 1. Функция f(x) = sign x (п. 3.1). Как было показано ранее, в точке х = 0 существуют левый и правый пределы этой функции, равные соответственно —1 и +1. Сама же точка х = 0 является точкой разрыва функции, поскольку пределы слева и справа не равны значению f(0) = 0.

Действия над непрерывными в точке функциями определяет следующая фундаментальная теорема.

ТЕОРЕМА 7. Пусть функции f(x) и g(х) непрерывны в точке а. Тогда функции f(x) ± g(x), f(x)g(x) и f(x)/g(x) также непрерывны в точке а (частное при условии g(a) ≠ 0).

3.7. Непрерывность элементарных функций

Непрерывность элементарных функций в точке

Постоянная функция f(x) = С является непрерывной в любой точке числовой прямой. Действительно,  f(x) = С = f(а), что соответствует определению непрерывности функции в точке.

Функция f(x) = х непрерывна в каждой точке а числовой прямой, так как предел функции в точке а равен ее значению в этой точке:  f(x) = а = f(a).

Из сказанного выше и теоремы 3.7 следует, что в любой точке числовой прямой функции x2 = x ∙ x, x3 = x2 ∙ х,..., xn = xn-1 ∙ x (n — натуральное число) непрерывны.

Алгебраический многочлен

также является непрерывной функцией в любой точке числовой прямой в силу теоремы 3.7, поскольку представляет собой сумму произведений непрерывных функций.

Дробно-рациональная функция

где Р(x) и Q(x) — алгебраические многочлены, в силу теоремы 3.7 непрерывна во всех точках числовой прямой за исключением корней знаменателя.

Тригонометрические функции sin x, и cos x непрерывны в любой точке x числовой прямой.

Непрерывность функций tg x = sin x / cos x и sec x = 1/ cos x соблюдается во всех точках, x ≠ π / 2 + nπ; аналогично непрерывность функций ctg x = cos x / sin x и sec x = 1 / sin x обеспечена во всех точках x ≠ пπ (n = 0, ±1, ±2,...).

Рассмотренные выше функции непрерывны в каждой точке, в окрестности которой они определены. В силу теоремы 3.7 функции, получаемые из них при использовании конечного числа арифметических операций, являются также непрерывными.

Непрерывность функции на интервале и отрезке

Говорят, что функция f(x) непрерывна на интервале (а, b), если она непрерывна в каждой точке этого интервала. Функция f(x) непрерывна на отрезке [а, b], если она непрерывна на интервале (а, b) и непрерывна в точке a справа, а в точке b слева:

Классификация точек разрыва функции

Точки разрыва, в которых функция не является непрерывной, классифицируются следующим образом.

1. Устранимый разрыв. Точка а называется точкой устранимого разрыва функции f(x), если предел функции в этой точке существует, но в точке а функция f(x) либо не определена, либо ее значение f(а) не равно пределу в этой точке.

Пример 1. Функция f(x) =  в точке х = 0, как известно, имеет предел, равный единице (первый замечательный предел). Однако в самой точке х = 0 эта функция не определена, т.е. здесь разрыв первого вида. Этот разрыв можно устранить (потому он и называется устранимым), если доопределить функцию в этой точке значением предела в ней, т.е. ввести новую функцию

Функция f1(x) является непрерывной на всей числовой прямой.

2. Разрыв первого рода. Точка а называется точкой разрыва первого рода функции f(x), если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы:

.

Пример 2. Рассмотрим функцию

для нее точка х = 0 является точкой разрыва 1-го рода. 

3. Разрыв второго рода. Точка а называется точкой разрыва второго рода функции f(x), если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или хотя бы один из односторонних пределов бесконечен.

Пример 3. Для функции f(x) = 1/x точка х = 0 является точкой разрыва 2-го рода, поскольку  .

Пример 4. Для функции f(x) = sin (l/x) точка х = 0 является точкой разрыва 2-го рода, так как ни левого, ни правого предела функции в этой точке не существует.

Пример 5. Рассмотрим функцию f(x) = е1/x = ехр  (рис. 3.8). Точка х = 0 является точкой разрыва 2-го рода для этой функции, так как предел слева равен нулю, а предел справа бесконечен:

Рис. 3.8

3.8. Понятие сложной функции

Определение. Если на некотором промежутке Х определена функция z = φ(x) с множеством значений Z и на множестве Z определена функция у = f(z), то функция у = f[φ(x)] называется сложной функцией от x (или суперпозицией функций), а переменная z — промежуточной переменной сложной функции.

Приведем примеры сложных функций.

Пример 1. у = cos —сложная функция, определенная на полубесконечном интервале (—,1], так как у = f(z) = cos z, z = φ(x) = .

Пример 2. у = — сложная функция, определенная на всей числовой прямой, поскольку у = f(z) = еz , z = φ(x) = —х2.

Пример 3. у =  — сложная функция, определенная на полубесконечных интервалах (-,0) и (0, + ), так как y = f(z) = z3/2, z = φ(x) = (1 + x) / x.

ТЕОРЕМА 8. Пусть функция z = φ(x) непрерывна в точке x0, а функция у = f(z) непрерывна в точке z0 = φ(x0). Тогда сложная функция у = f[φ{x)] непрерывна в точке x0 = 0.

Пример 4. Функция y = tg (x2 + 2x) непрерывна в точке x = 0, так как функция z = х2 + х непрерывна в точке х = 0, а функция у = tg z непрерывна в точке z = 0. 

3.9. Элементы аналитической геометрии на плоскости

Уравнение линии на плоскости

Пусть на плоскости задана система координат. Рассмотрим уравнение вида

Говорят, что уравнение (3.9) определяет (задает) линию L в системе координат Оху. Вообще говоря, линии на координатной плоскости могут быть самыми различными.

Линии первого порядка

К линиям первого порядка относятся те линии, для которых задающее их уравнение (3.9) содержит переменные x и у только в первой степени. Иными словами, такие линии описываются уравнениями вида

где А, В и С — постоянные числа. Из этого уравнения можно выразить переменную у как функцию от аргумента х при В ≠ 0:

Уравнение (3.11) называют уравнением прямой с угловым коэффициентом k = tg φ, где φ — угол наклона прямой к положительному направлению оси Ох (рис. 3.9). Если k = 0, то прямая параллельна оси Ох и отстоит от нее на b масштабных единиц.

Рис. 3.9

Определим самые необходимые элементы знания о прямых на плоскости.

1. Кроме "классического" уравнения прямой (3.11) следует знать еще две его разновидности. Первая из них — это уравнение прямой с заданным угловым коэффициентом k, проходящей через заданную точку М0(x0, у0):

Другой вид — это уравнение прямой, проходящей через две заданные точки на плоскости M1(x1, y1) и М2(х2, у2):

2. Угол между прямыми. Рассмотрим две прямые, заданные уравнениями у = k1x + b1 и у = k2x + b2, где k1 = tg φ1 и k2 = tg φ2 (рис. 3.10). Пусть φ — угол между этими прямыми. Тогда φ = φ2 — φ1 и мы получаем tg φ = tg (φ2 — φ1) = или, что то же самое,

Рис. 3.10

Формула (3.12) определяет один из углов между пересекающимися прямыми; второй угол равен π - φ.

Из равенства (3.12) вытекают условия параллельности и перпендикулярности прямых. В самом деле, если прямые параллельны, то

Если прямые перпендикулярны, то α2 = π/2 + α1, откуда tg α2 = -ctg α1 = -1 / tg α1, или окончательно

Пример 1. Найти угол между прямыми, заданными уравнениями у = 2x - 5 и у = -3x + 4.

Решение. Подставляя в формулу (3.12) значения k1 = 2 и k2 = -3, имеем

откуда получаем, что один из углов равен φ = π / 4.

3. Расстояние от точки до прямой. Пусть прямая задана уравнением общего вида (3.10). Тогда расстояние d от произвольной точки М0(x0, y0) до прямой (рис. 3.11) дается формулой 

Рис. 3.11


На главную страницу сайта