На главную v-garant.ru
Алгебра и аналитическая геометрия Метод Гаусса Комплексные числа Предел функции одной переменной Схема исследования графика функции Исследование функции на экстремум Локальный экстремум функции Функциональные ряды

Учебник по высшей математике

Исследование функции на экстремум с помощью производных высших порядков.

 Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.

 Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.

 Доказательство.

 Пусть f¢(x1) = 0 и f¢¢(x1)<0. Т.к. функция f(x) непрерывна, то f¢¢(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1, но f¢(x1)=0, т.е. f¢(x) > 0 при х<x1 и f¢(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная f¢(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.

 

Выпуклость и вогнутость кривой.

Точки перегиба.

 Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

 

 На рисунке показана иллюстрация приведенного выше определения.

 Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

 Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке.

  Уравнение кривой: y = f(x);

 Уравнение касательной:

Следует доказать, что .

По теореме Лагранжа для f(x) – f(x0): , x0 < c < x.

По теореме Лагранжа для  

Пусть х > x0 тогда x0 < c1 < c < x. Т.к. x – x0 > 0 и c – x0 > 0, и кроме того по условию

,  следовательно, .

Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то

.

  Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

Теорема доказана.

  Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

 Очевидно, что в точке перегиба касательная пересекает кривую.

  Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

  Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при

x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.

Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.

Теорема доказана.

 

Асимптоты.

 При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

  Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

  Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.

  Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.

 

 Рассмотрим подробнее методы нахождения асимптот кривых.

Вертикальные асимптоты.

 Из определения асимптоты следует, что если или  или , то прямая х = а – асимптота кривой y = f(x).

  Например, для функции  прямая х = 5 является вертикальной асимптотой.

Наклонные асимптоты.

 Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.

 Обозначим точку пересечения кривой и перпендикуляра к асимптоте – М, Р – точка пересечения этого перпендикуляра с асимптотой. Угол между асимптотой и осью Ох обозначим j. Перпендикуляр МQ к оси Ох пересекает асимптоту в точке N.

  Тогда MQ = y – ордината точки кривой, NQ =  - ордината точки N на асимптоте.

  По условию: ÐNMP = j.

Угол j - постоянный и не равный 900, тогда

Тогда  .

Итак, прямая y = kx + b – асимптота кривой. Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.

 В полученном выражении выносим за скобки х:

Т.к. х®¥, то , т.к. b = const, то .

Тогда ,  следовательно, 

.

Т.к. , то , следовательно,

  Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

 

 Пример. Найти асимптоты и построить график функции .

1) Вертикальные асимптоты: y®+¥ x®0-0:  y®-¥  x®0+0, следовательно, х = 0- вертикальная асимптота.

2) Наклонные асимптоты:

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Построим график функции:

 

  Пример. Найти асимптоты и построить график функции .

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

Найдем наклонные асимптоты:

y = 0 – горизонтальная асимптота.

 

Пример. Найти асимптоты и построить график функции .

Прямая х = -2 является вертикальной асимптотой кривой.

Найдем наклонные асимптоты.

Итого, прямая у = х – 4 является наклонной асимптотой.

 

 

Общая схема исследования функций

 Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

Точки разрыва. (Если они имеются).

Интервалы возрастания и убывания.

Точки максимума и минимума.

Максимальное и минимальное значение функции на ее области определения.

Области выпуклости и вогнутости.

Точки перегиба.(Если они имеются).

Асимптоты.(Если они имеются).

Построение графика.

Применение этой схемы рассмотрим на примере.

 

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = -; x = ; x = -1; x = 1.

Найдем вторую производную функции

.

  Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < -, y¢¢ < 0, кривая выпуклая

- < x < -1, y¢¢ < 0,  кривая выпуклая

-1 < x < 0, y¢¢ > 0, кривая вогнутая

 0 < x < 1, y¢¢ < 0, кривая выпуклая

 1 < x < , y¢¢ > 0, кривая вогнутая

   < x < ¥, y¢¢ > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < -, y¢ > 0, функция возрастает

- < x < -1, y¢ < 0, функция убывает

-1 < x < 0, y¢ < 0, функция убывает

 0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

  < x < ¥, y¢¢ > 0, функция возрастает

  Видно, что точка х = - является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно 3/2 и -3/2.

 

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

  Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

 

 

  Ниже рассмотрим несколько примеров исследования методами дифференциального исчисления различных типов функций.

 Пример: Методами дифференциального исчисления исследовать функцию  и построить ее график.

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

 с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

Применение дифференциала к приближенным вычислениям. Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Дифференциал функции

Производные и дифференциалы высших порядков. Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Возрастание и убывание функции, точки экстремума.


Математический анализ