На главную v-garant.ru
Алгебра и аналитическая геометрия Метод Гаусса Комплексные числа Предел функции одной переменной Схема исследования графика функции Исследование функции на экстремум Локальный экстремум функции Функциональные ряды

Учебник по высшей математике

Градиент.

 Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке

,

то этот вектор называется градиентом функции u.

  При этом говорят, что в области D задано поле градиентов.

 

Связь градиента с производной по направлению.

 Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов

.

Тогда производная  по направлению некоторого вектора  равняется проекции вектора gradu на вектор .

 Доказательство: Рассмотрим единичный вектор  и некоторую функцию u = u(x, y, z) и найдем скалярное произведение векторов  и gradu.

  Выражение, стоящее в правой части этого равенства является производной функции u по направлению s.

 Т.е. . Если угол между векторами gradu и  обозначить через j, то скалярное произведение можно записать в виде произведения модулей этих векторов на косинус угла между ними. С учетом того, что вектор  единичный, т.е. его модуль равен единице, можно записать:

  Выражение, стоящее в правой части этого равенства и является проекцией вектора grad u на вектор .

Теорема доказана.

 Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – вектор, показывающий направление наискорейшего изменения некоторого скалярного поля u в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.

 С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.

 

Числовые ряды.

Основные определения.

 Определение. Сумма членов бесконечной числовой последовательности  называется числовым рядом.

При этом числа  будем называть членами ряда, а un – общим членом ряда.

  Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

 Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

 Определение. Ряд  называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

 Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

 

Свойства рядов.

 1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

 2) Рассмотрим два ряда  и , где С – постоянное число.

 Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

 3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

 Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд  тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

 При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

 

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

 Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого  существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

  Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

  выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

 

Сформулируем критерий Коши для ряда.

 Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого  существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

.

  Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

 1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд  является расходящимся, хотя его общий член и стремится к нулю.

 Пример. Исследовать сходимость ряда

Найдем   - необходимый признак сходимости не выполняется, значит ряд расходится.

Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что

  Однако, при этом последовательность частных сумм ограничена, т.к.   при любом n.

 

Ряды с неотрицательными членами.

 При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

 Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Лекция 23. Сходимость рядов.

23.1. Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда  и  при un, vn ³ 0.

 

 Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда

 Доказательство. Обозначим через Sn и sn частные суммы рядов  и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд  расходится, то расходится и ряд .

  Пример. Исследовать на сходимость ряд

Т.к. , а ряд  сходится ( как убывающая геометрическая прогрессия), то ряд  тоже сходится.

 Также используется следующий признак сходимости:

Теорема. Если  и существует предел , где h – число, отличное от нуля, то ряды  и ведут одинаково в смысле сходимости.

 

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

  Если для ряда  с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд  сходится, если же для всех достаточно больших n выполняется условие

то ряд  расходится.


Математический анализ