Лекции по математике
Матрицы
Исследование функции
Вычисление пределов
Примеры решения задач
Двойной интеграл
Тройной интеграл
Криволинейный интеграл
Комплексные числа
Поверхностный интеграл
Интегрирование по частям
Карта сайта

 


Учебник по высшей математике

Градиент.

 Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке

,

то этот вектор называется градиентом функции u.

  При этом говорят, что в области D задано поле градиентов.

 

Связь градиента с производной по направлению.

 Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов

.

Тогда производная  по направлению некоторого вектора  равняется проекции вектора gradu на вектор .

 Доказательство: Рассмотрим единичный вектор  и некоторую функцию u = u(x, y, z) и найдем скалярное произведение векторов  и gradu.

  Выражение, стоящее в правой части этого равенства является производной функции u по направлению s.

 Т.е. . Если угол между векторами gradu и  обозначить через j, то скалярное произведение можно записать в виде произведения модулей этих векторов на косинус угла между ними. С учетом того, что вектор  единичный, т.е. его модуль равен единице, можно записать:

  Выражение, стоящее в правой части этого равенства и является проекцией вектора grad u на вектор .

Теорема доказана.

 Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – вектор, показывающий направление наискорейшего изменения некоторого скалярного поля u в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.

 С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.

 

Числовые ряды.

Основные определения.

 Определение. Сумма членов бесконечной числовой последовательности  называется числовым рядом.

При этом числа  будем называть членами ряда, а un – общим членом ряда.

  Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

 Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

 Определение. Ряд  называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

 Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

 

Свойства рядов.

 1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

 2) Рассмотрим два ряда  и , где С – постоянное число.

 Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

 3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

 Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд  тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

 При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

 

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

 Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого  существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

  Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

  выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

 

Сформулируем критерий Коши для ряда.

 Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого  существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

.

  Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

 1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд  является расходящимся, хотя его общий член и стремится к нулю.

 Пример. Исследовать сходимость ряда

Найдем   - необходимый признак сходимости не выполняется, значит ряд расходится.

Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что

  Однако, при этом последовательность частных сумм ограничена, т.к.   при любом n.

 

Ряды с неотрицательными членами.

 При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

 Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Лекция 23. Сходимость рядов.

23.1. Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда  и  при un, vn ³ 0.

 

 Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда

 Доказательство. Обозначим через Sn и sn частные суммы рядов  и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд  расходится, то расходится и ряд .

  Пример. Исследовать на сходимость ряд

Т.к. , а ряд  сходится ( как убывающая геометрическая прогрессия), то ряд  тоже сходится.

 Также используется следующий признак сходимости:

Теорема. Если  и существует предел , где h – число, отличное от нуля, то ряды  и ведут одинаково в смысле сходимости.

 

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

  Если для ряда  с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд  сходится, если же для всех достаточно больших n выполняется условие

то ряд  расходится.


На главную страницу сайта