Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Решение примерного варианта контрольной работы №2

Задача 3. Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Решение.

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

  Сделаем замену переменной в определенном интеграле:

, ,

тогда получим: .

 Используем прием «подведение под знак дифференциала части подинтегральной функции»:

Ответ:  ед. работы.

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

, .

Ответы: , .

ЗАДАЧА (наилучшего локального приближения)

Пусть произвольная функция с "хорошими" свойствами   рассматривается на какой-либо окрестности точки . Найти многочлен  заданной степени  так, чтобы отклонение  на  было наименьшим.

РЕШЕНИЕ. Ищем  в виде многочлена по степеням разности .

Тогда естественно потребовать выполнение соотношений

  при , т.е. ;

  при , т.е.

;

  при , т.е.

.

Аналогично  и далее .


Вычисление определенного интеграла