Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Неопределенный интеграл. Табличное интегрирование.

Задания для подготовки к практическому занятию

Выучите основную таблицу интегралов.

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную:

.

Поскольку полученная производная не совпадает с подынтегральной функцией , значит, интеграл найден не верно.

(Заметим впрочем, что исправить ситуацию в данном случае легко, домножив правую часть данного равенства на : .)

 Вычислить интегралы:

2. ;  3. ; 4.; 5.

Решение:

2. Данный интеграл является табличным (№10) с точностью до постоянного множителя 2 перед х2:

3. Представим дробь под интегралом в виде суммы, разделив почленно числитель на знаменатель:

.

4. Чтобы свести данный интеграл к табличным, применим простые тригонометрические преобразования:

5. Интеграл отличается от табличного (№3) линейной заменой (5-3х вместо х). Воспользуемся правилом линейной замены (§17.1):

.

Следует помнить правило этого перехода:

Заменить  и  в функции f (x;y) и в уравнениях границ области D;

Заменить  ;

При вычислении двойного интеграла в полярных координатах внешний интеграл вычисляется поот  до, а внутренний по от  до  - если полюс 0 лежит вне области D. Если полюс 0 лежит внутри области D, то внешний интеграл по от 0 до , а внутренний по  от 0 до  (граница области D).

Пример. Вычислить , если D:

Чертеж области D:

  - круг с центром в точке: (1;0) и радиусом r = 1:

В полярной системе уравнение

1) преобразуется:

 

  (рис.10)

 2) прямая 

Ответ: .

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций. На наш взгляд, приведенный там материал достаточно прост и показателен, сделаем только два замечания

Функции нескольких переменных Пример. Найти область определения функции

Неопределенный интеграл Пример .

Найти интеграл . Решение. Воспользуемся формулой интегрирования по частям: .

Найти интеграл .


Самые лучшие неподражаемые путаны Астрахани на сайте astrahan.x-whore.com | zprostitutki-kaliningrada.com - неотразимые индивидуалки путаны Калининграда
На главную страницу сайта