Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Замена переменной и интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Задания для подготовки к практическому занятию

Итак, для вычисления неопределенного интеграла необходимо свести его к табличному, выбирая для этого на каждом шаге одно из трех действий:

- упрощение (разложение на слагаемые),

- замену переменной (включая сюда и внесение под дифференциал),

- интегрирование по частям.

Примеры

  - табличный интеграл (вынести )

  - упростить, разделив почленно числитель на знаменатель

  - сделать замену t=-(x2+1) (или внести х под знак дифференциала)

  - берется по частям (u=x, dv=cos(1-px)dx)

Выделение полного квадрата в квадратном трехчлене – способ выбора замены переменной. Для того, чтобы выделить полный квадрат, надо вспомнить формулу сокращенного умножения:

Подчеркнуты два слагаемых, на которые мы будем опираться при выделении полного квадрата. Перепишем равенство:

Пример

Рассмотрим квадратный трехчлен . Прежде всего вынесем за скобки множитель перед х2:

Первые два слагаемых в скобках соответствуют первым двум слагаемым в правой части формулы квадрата суммы. Следовательно, очевидно, . Таким образом, получаем:

.


На главную страницу сайта