Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Задание 9. Разложить в ряд Лорана функцию  в окрестности особой точки .

Решение. Воспользуемся известным разложением:

.

Задание 10. Для функции  найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

a) ;

б) ;

в) .

Решение.

а). Особой точкой функции является точка . Чтобы определить вид особой точки разложим функцию в ряд Лорана по степеням :

Главная часть ряда Лорана содержит конечное число слагаемых, значит   - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

б). Особой точкой функции является точка . Чтобы определить вид особой точки используем признак поведения функции в особой точке.

, значит  устранимая точка и, следовательно .

в). Особой точкой функции является точка . Чтобы определить вид особой точки используем разложение функции в ряд Лорана по степеням :

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит  - существенно особая точка. Тогда , т.к. коэффициент при  равен нулю.

 Основные свойства тройного интеграла.

1) Пусть  непрерывна в объемной области D и , то

2) Если k постоянная величина, то

3) Если  и   непрерывны в области DR3, то

4) Если для любых  DR3 выполняется неравенство: , то


На главную страницу сайта