Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Матрицы и определители

Решить матричные уравнения АХ=В и YА=В.

Решение: Уравнение АХ=В, если матрица А имеет обратную, решается по формуле Х=А-1В. Получаем:

 

Уравнение YА=В, если матрица А имеет обратную, решается по формуле Y=ВА-1. Получаем:

3. Записать систему линейных уравнений в виде матричного уравнения: 

Решение: Система линейных уравнений эквивалентна матричному уравнению АХ=В, где Х – столбец неизвестных; А – матрица коэффициентов при неизвестных в левых частях уравнений (необходимо следить за очередностью неизвестных в записи уравнения; если неизвестной в уравнении нет, значит, соответствующий коэффициент равен 0); В – столбец свободных коэффициентов:

; ;

4. Решить систему из п3 при помощи правила Крамера

Решение: Прежде всего, найдем определитель системы:

,

следовательно, система имеет единственное решение, которое можно найти по правилу Крамера. Для определения значения переменной х вычислим определитель , полученный из D заменой столбца коэффициентов при переменной х на столбец свободных коэффициентов:

, значит,  .

Аналогично, определитель  получаем из D заменой столбца коэффициентов при переменной y на столбец свободных коэффициентов:

,

.

Далее, определитель  получаем из D заменой третьего столбца на столбец свободных коэффициентов:

Таким образом, решением системы является тройка чисел (-1;1;1). Подстановкой в уравнения системы убеждаемся, что решение найдено верно.

Замечание 1. Если область D является правильной в направлении обеих осей и границы описываются следующим образом:

нижняя граница: ; верхняя граница: ; x[a;b];

левая граница: ; правая граница: ; y[c;d],

то выполняется равенство:

Общеупотребительна другая запись повторных интегралов:

 

или


На главную страницу сайта