На главную v-garant.ru
Матрицы и определители Векторы Вычисление пределов Исследование функции Математическая логика Производная функции Неопределенный интеграл Вычисление определенного интеграла Двойной интеграл Вычислить тройной интеграл

Решение задач контрольной по математике. Типовые и курсовые расчеты

Матрицы. Терминология

Прямоугольная таблица действительных чисел

  (1.1)

называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы  и т.д. с индексами  и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения

или просто . Эти обозначения мы также будем использовать в дальнейшем.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

Достаточность:

Рассмотрим любой контур , ограничивающий область  (т.к. область D односвязная). Тогда по формуле Грина:

Так как по условию теоремы  в любой точке , то

  в области . Следовательно,

Так как контур C произвольный в области D, то  в области D не зависит от пути интегрирования.

Достаточность доказана.


Вычисление криволинейных интегралов 1-го рода