Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Предел последовательности

Задания для подготовки к практическому занятию

Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…). Таким образом, последовательность – это функция, заданная на множестве натуральных чисел. Задают последовательность чаще всего формулой общего члена. Например, если , то первые члены этой последовательности:

Понятие предела последовательности поясним пока на простых примерах:

- Последовательность натуральных чисел 1,2,3,4,5,… неограниченно возрастает или стремится к плюс бесконечности: n®+¥. Поскольку n – натуральные числа и не могут быть отрицательными, знак «+» обычно опускают, подразумевая его «по умолчанию», и пишут n®¥.

- Последовательность  стремится к 0 при n®¥. Действительно, при очень больших значениях n значения  становятся очень

маленькими, так что, хотя члены этой последовательности не становятся равны 0, но отграничить их от 0 невозможно: начиная с некоторого номера все члены этой последовательности оказываются ближе к 0, чем любое заранее выбранное число e. Это легко понять, например если изобразить члены последовательности точками на числовой прямой.

Пишут:  (предел при n®¥ равен 0) или иногда .

- Сходным образом  и т.п. Вообще, если числитель дроби постоянен, а знаменатель неограниченно взрастает, то вся дробь стремится к 0.

При вычислении пределов последовательностей пользуются простыми их свойствами:

предел суммы равен сумме пределов (если последние существуют и конечны);

предел произведения равен произведению пределов (если последние существуют и конечны);

предел отношения равен отношению пределов (если последние существуют и конечны и предел знаменателя не равен 0).

Определение двойного интеграла.

Определение 1. Сумма , построенная в п. 1 называется интегральной суммой для функции f (x; y) на замкнутой области D.

Определение 2. Двойным интегралом от функции f (x;y) по замкнутой области D называется предел интегральной суммы  при условиях:

а) n → ∞ и  max ∆Si → 0 (стягиваясь в точку);

б) этот предел существует и не зависит ни от способа разбиения области D на части, ни от выбора на этих частях точек  

Обозначение двойного интеграла:

 

Теорема (достаточное условие существования двойного интеграла).

Если в замкнутой области DR² функция z = f (x;y) непрерывна, то двойной интеграл от этой функции по области D существует.

Вычислить  .

Предел функции  Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

Вычислить предел с помощью формулы Тейлора: .

Предел, непрерывность ФНП ПРИМЕР. Доказать по определению . Решение. Берем . Ищем  

Предел и непрерывность функции обной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство .

ПРИМЕР Показать по определению . Теоремы о пределах о свойствах функций, имеющих конечные пределы

Существование предела частного функций  доказывается аналогично, если предварительно установить ограниченность функции  на некоторой окрестности .

Односторонние пределы

Второй замечательный предел


мальчики по вызову: ночных мотыльков поймали, youtube
На главную страницу сайта