Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Неопределенный интеграл

Пример 3. Найти интеграл .

Решение. Воспользуемся формулой интегрирования по частям:

.

В выражении, стоящем под знаком интеграла, обозначим: , а .

По данным  и , для составления правой части формулы, вычисляем   и:

.

Составляем правую часть формулы интегрирования по частям, записывая вместо   их выражения.

Пример 4. Найти интеграл .

Решение. Отделим от нечетной степени один множитель: .

Если положить , то . Перейдем в интеграле к новой переменной t:

Возвратившись к прежней переменной, получаем: .

Пример 5. Найти интеграл  .

Решение. Понизим у  и  степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

Первый интеграл является табличным: , а во втором интеграле применим формулу понижения степени. Тогда искомый интеграл преобразуется к виду:

.

ОПРЕДЕЛЕНИЕ. Множество всех первообразных для функции  на промежутке  называется неопределенным интегралом
функции  на  и обозначается символом .

Выражение  называется подынтегральным выражением,  – подынтегральной функцией,  – переменной интегрирования,  – произвольной постоянной. Процедуру отыскания
неопределенного интеграла функции называют интегрированием функции (будем говорить, что "интеграл вычисляется").

Если   – какая-либо первообразная функции  на , то в силу определения неопределенного интеграла и свойств первообразных имеем , , .

Для краткости это равенство записывается обычно в виде

.


Вычислить интеграл от функции комплексного переменного