Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Вычислить тройной интеграл , где

Решение

Теорема 1 о переходе к сферическим координатам

Пусть - непрерывно дифференцируемые и пусть - непрерывная на функция. Тогда

Переход к сферическим координатам осуществляется функциями

r - расстояние точки M от начала координат (длина радиус-вектора точки);

- угол между радиус-вектором и положительным направлением оси OZ;

- угол между положительным направлением оси OX и проекцией радиус-вектора на плоскость XOY, отсчитываемый против часовой стрелки (полярный угол).

Границы изменения сферических координат для всех точек пространства:

Связь сферических и декартовых координат:

Замена переменных в тройном интеграле осуществляется в общем случае по формуле, аналогичной формуле замены переменных в двойном интеграле. В частности, при переходе к сферическим координатам эта формула имеет вид:

I - это определитель Якоби, имеющий вид:

т.к. и .

Вычисление тройного интеграла в декартовых координатах

Формула перевода тройного интеграла к сферическим координатам:

Далее тройной интеграл сводится к трехкратному в соответствии с неравенствами для области V в сферических координатах.

Эффективно переводить в сферические координаты тройной интеграл по областям, в границах которых есть сфера.

НЕПОСРЕДСТВЕННОЕ ИНТЕГРИРОВАНИЕ С ПОМОЩЬЮ ТАБЛИЧНЫХ ИНТЕГРАЛОВ

Сведение исходного интеграла к табличному тесно связано с операцией подведения функции под знак дифференциала: . Функция  – какая-то первообразная для  и ее подбирают, используя формулы дифференцирования и правила дифференцирования. Например, имеем (для  из ОДЗ функций):

;

;

;

;

;

 и т.д.

Тройной интеграл в цилиндрических и сферических координатах

Вычислить тройной интеграл , где

С помощью тройного интеграла наряду с другими величинами можно вычислить

Применение тройных интегралов. Масса неоднородного тела

Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

Цилиндрические координаты

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.


xprostitutki-chelyabinska.com - страстные проститутки Челябинска | Неподражаемые дешевые проститутки Томска на http://zprostitutki-tomska.com | Неотразимые проститутки Орла на http://1prostitutki-orla.com | Самые страстные дешевые проститутки Белгорода на сайте dosug-belgorod.net
Вычислить интеграл от функции комплексного переменного