Лекции по математике
Криволинейный интеграл
Векторное поле
Вычисление пределов
Примеры решения задач
Поверхностный интеграл
Решение типовых задач
Производная функции
Интегрирование по частям
Двойной интеграл
Тройной интеграл
Карта сайта

Решение задач контрольной по математике. Типовые и курсовые расчеты

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Примеры.  – функция трёх переменных;

  – функция n переменных.

Общее название: функции нескольких переменных (ФНП).

 

Частные производные ФНП

Ели одному из аргументов функции z = f (x, y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: – это частное приращение функции z по аргументу x; – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример.  Þ

ФОРМУЛА ТЕЙЛОРА ДЛЯ ФНП

 

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной:

Здесь  – дифференциал -го порядка функции  в точке , его можно записать в операторной форме

,

где  – фиксированная точка; , , ,  – имеют
постоянные значения. Через  обозначен остаточный член


Вычислить интеграл от функции комплексного переменного