Электротехника
Теория цепей
Методичка
Учебник по математике
Электроника
Физика
Матанализ
Контрольные
Начертательная геометрия
Конспекты
Лабораторные работы
Карта сайта

Физика Конспект лекций, лабораторные и задачи курсовых работ

Резонансное поглощение g-излучения (эффект Мёссбауэра)

Как уже указывалось, дискретный спектр g-излучения обусловлен дискретностью энергетических уровней ядер атомов. Однако, как следует из соотношения неопределенностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах DE»h/Dt, где Dt — время жизни ядра в возбужденном состоянии. Следовательно, чем меньше Dt, тем больше неопределенность энергии DE возбужденного состояния. DE=0 только для основного состояния стабильного ядра (для него Dt®¥). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10–13 с, естественная ширина энергетического уровня примерно 10–2 эВ.

* Р. Мёссбауэр (р. 1929) — немецкий физик.

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состоянии ядра, приводит к немонохроматичности g-излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии g-излучения. Ускорение при криволинейном движении материальной точки Лекции по физике

При прохождении g-излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить g-квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение g-излучения ядрами: ядро поглощает g-квант той же частоты, что и частота излучаемого ядром g-кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения g-квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый g-квант имеет энергию Еg несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:

где Ея — кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е g-квант должен иметь энергию

где Ея — энергия отдачи, которую g-квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг относительно друга на величину 2Ея (рис. 344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы g-кванта и ядра должны быть равны, получим

  (260.1)

Например, возбужденное состояние изотопа иридия Ir имеет энергию 129 кэВ, а время его жизни порядка 10–10 с, так что ширина уровня Г » 4×10–5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5×10–2 эВ, т. е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.

Резонансное поглощение g-излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Нобелевская премия 1961 г.). Он исследовал излучение и поглощение g-излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) g-квант, а всей кристаллической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и поглощения g-излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) g-квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра. При рассмотренных условиях линии излучения и поглощения g-излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г. Эффект Мёссбауэра был открыт на глубоко охлажденном Ir (с понижением температуры колебания решетки «замораживаются»), а впоследствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).

Мёссбауэр вооружил экспериментальную физику новым методом измерений невиданной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/E=10–15¸10–17, поэтому во многих областях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали g-линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движения в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезновению эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравитационное красное смещение», предсказанный общей теорией относительности Эйнштейна.