Электротехника
Теория цепей
Методичка
Учебник по математике
Электроника
Физика
Матанализ
Контрольные
Начертательная геометрия
Конспекты
Лабораторные работы
Карта сайта

Физика Конспект лекций, лабораторные и задачи курсовых работ

Излучение диполя. Применение электромагнитных волн

Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону

где р0 — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +Q и отрицательного заряда –Q, гармонически колеблющегося вдоль направления р с частотой w.

Задача об излучении диполя имеет в теории излучающих систем важное значение, так как всякую реальную излучающую систему (например, антенну) можно рассчитывать рассматривая излучение диполя. Кроме того, многие вопросы взаимодействия излучения с веществом можно объяснить на основе классической теории, рассматривая атомы как системы зарядов, в которых электроны совершают гармонические колебания около их положений равновесия.

Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r>>l), — так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r < l.

Если волна распространяется в однородной изотропной среде, то время прохождения волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим и, следовательно, волна, излучаемая диполем, есть сферическая волна. Цепная реакция деления Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ³ 1.

В каждой точке векторы Е и Н колеблются по закону cos(wt—kr), амплитуды этих векторов пропорциональны (1/r) sinq (для вакуума), т. е. зависят от расстояния r до излучателя и угла q между направлением радиуса-вектора и осью диполя. Отсюда следует, что интенсивность излучения диполя в волновой зоне Примеры решения задач Решение задач по физике примеры

  (164.1)

Зависимость (164.1) I от q при заданном значении r, приводимая в полярных координатах (рис. 228), называется диаграммой направленности излучения диполя. Как видно из выражения (164.1) и приведенной диаграммы, диполь сильнее всего излучает в направлениях, перпендикулярных его оси (q = p/2). Вдоль своей оси (q =0 и q =p) диполь не излучает вообще. Диаграмма направленности излучения диполя позволяет формировать излучение с определенными характеристиками и используется при конструировании антенн.

Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А. С. Попов (1859—1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль для распространения и развития теории Максвелла.

Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации — обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.

Для электромагнитных волн характерно явление дифракции — огибания волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпуклостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радиогеодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки и техники, где бы они не использовались.

Задачи

20.1. Электромагнитная волна с частотой 4 МГц переходит из немагнитной среды с диэлектрической проницаемостью e =3 в вакуум. Определить приращение ее длины волны. [31,7 м]

20.2. Два параллельных провода, одни концы которых изолированы, а другие индуктивно соединены с генератором электромагнитных колебаний, погружены в спирт. При соответствующем подборе частоты колебаний в системе возникают стоячие волны. Расстояние между двумя узлами стоячих волн на проводах равно 0,5 м. Принимая диэлектрическую проницаемость спирта e = 26, а его магнитную проницаемость m =1, определить частоту колебаний генератора. [58,8 МГц]

20.3. В вакууме вдоль оси х распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 18,8 В/м. Определить интенсивность волны, т.е. среднюю энергию, приходящуюся за единицу времени на единицу площади, расположенной перпендикулярно направлению распространения волны. [0,47 Вт/м2]