Электротехника
Теория цепей
Методичка
Учебник по математике
Электроника
Физика
Матанализ
Контрольные
Начертательная геометрия
Конспекты
Лабораторные работы
Карта сайта

Физика Конспект лекций, лабораторные и задачи курсовых работ

Аберрации (погрешности) оптических систем

Рассматривая прохождение света через тонкие линзы, мы ограничивались параксиальными лучами. Показатель преломления материала линзы считали не зависящим от длины волны падающего света, а падающий свет — монохроматическим. Так как в реальных оптических системах эти условия не выполняются, то в них возникают искажения изображения, называемые аберрация» (или погрешностями).

1. Сферическая аберрация. Если расходящийся пучок света падает на линзу, то параксиальные лучи после преломления пересекаются в точке S' (на расстоянии OS' от оптического центра линзы), а лучи, более удаленные от оптической оси, — в точке S", ближе к линзе (рис. 238). В результате изображение светящейся точки на экране, перпендикулярном оптической оси, будет в виде расплывчатого пятна. Этот вид погрешности, связанный со сферичностью преломляющих поверхностей, называется сферической аберрацией. Количественной мерой сферической аберрации является отрезок d = OS'' – OS'. Применяя диафрагмы (ограничиваясь параксиальными лучами), можно сферическую аберрацию уменьшить, однако при этом уменьшается светосила линзы. Сферическую аберрацию можно практически устранить, составляя системы из собирающих (d <0) и рассеивающих (d >0) линз. Сферическая аберрация является частным случаем астигматизма. Дифракция света Решение задач по физике примеры

2. Кома. Если через оптическую систему проходит широкий пучок от светящейся точки, расположенной не на оптической оси, то получаемое изображение этой точки будет в виде освещенного пятнышка, напоминающего кометный хвост. Такая погрешность называется поэтому комой. Устранение комы производится теми же приемами, что и сферической аберрации.

3. Дисторсия. Погрешность, при которой при больших углах падения лучей на линзу линейное увеличение для точек предмета, находящихся на разных расстояниях от главной оптической оси, несколько различается, называется дисторсией. В результате нарушается геометрическое подобие между предметом (прямоугольная сетка, рис. 239, а) и его изображением (рис. 239, б — подушкообразная дисторсия, рис. 239, в — бочкообразная дисторсия). Дисторсия особенно опасна в тех случаях, когда оптические системы применяются для съемок, например при аэрофотосъемке, в микроскопии и т.д. Дисторсию исправляют соответствующим подбором составляющих частей оптической системы.

4. Хроматическая аберрация. До сих пор мы предполагали, что коэффициенты преломления оптической системы постоянны. Однако это утверждение справедливо лишь для освещения оптической системы монохроматическим светом (l = const); при сложном составе света необходимо учитывать зависимость коэффициента преломления вещества линзы (и окружающей среды, если это не воздух) от длины волны (явление дисперсии). При падении на оптическую систему белого света отдельные составляющие его монохроматические лучи фокусируются в разных точках (наибольшее фокусное расстояние имеют красные лучи, наименьшее — фиолетовые), поэтому изображение размыто и по краям окрашено. Это явление называется хроматической аберрацией. Так как разные сорта стекол обладают различной дисперсией, то, комбинируя собирающие и рассеивающие линзы из различных стекол, можно совместить фокусы двух (ахроматы) и трех (апохроматы) различных цветов, устранив тем самым хроматическую аберрацию. Системы, исправленные на сферическую и хроматическую аберрации, называются апланатами. Металлы, диэлектрики и полупроводники по зонной теории Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

5. Астигматизм. Погрешность, обусловленная неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка, называется астигматизмом. Так, изображение точки, удаленной от главной оптической оси, наблюдается на экране в виде расплывчатого пятна эллиптической формы. Это пятно в зависимости от расстояния экрана до оптического центра линзы вырождается либо в вертикальную, либо в горизонтальную прямую. Астигматизм исправляется подбором радиусов кривизны преломляющих поверхностей и их фокусных расстояний. Системы, исправленные на сферическую и хроматическую аберрации и астигматизм, называются анастигматами.

Устранение аберраций возможно лишь подбором специально рассчитанных сложных оптических систем. Одновременное исправление всех погрешностей—задача крайне сложная, а иногда даже неразрешимая. Поэтому обычно устраняются полностью лишь те погрешности, которые в том или ином случае особенно вредны.

 

Основные фотометрические величины и их единицы

Фотометрия — раздел оптики, занимающийся вопросами измерения интенсивности света и его источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического излучения безотносительно к его действию на приемники излучения;

2) световые — характеризуют физиологические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.

1. Энергетические величины. Поток излучения Фе — величина, равная отношению энергии W излучения ко времени t, за которое излучение произошло:

Единица потока излучения — ватт (Вт).

Энергетическая светимость (излучательность) Re — величина, равная отношению потока излучения Фe, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:

т. е. представляет собой поверхностную плотность потока излучения.

Единица энергетической светимости — ватт на метр в квадрате (Вт/м2).

Энергетическая сила света (сила излучения) Ie определяется с помощью понятия о точечном источнике света — источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света Ie — величина, равная отношению потока излучения Фe источника к телесному углу w, в пределах которого это излучение распространяется:

Единица энергетической силы света — ватт на стерадиан (Вт/ср).

Энергетическая яркость (лучистость) Be — величина, равная отношению энергетической силы света DIe, элемента излучающей поверхности к площади DS проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:

Единица энергетической яркости — ватт на стерадиан-метр в квадрате (Вт/(ср × м2)).

Энергетическая освещенность (облученность) Ее характеризует величину потока излучения, падающего на единицу освещаемой поверхности. Единица энергетической освещенности совпадает с единицей энергетической светимости (Вт/м2).

2. Световые величины. При оптических измерениях используются различные приемники излучения (например, глаз, фотоэлементы, фотоумножители), которые не обладают одинаковой чувствительностью к энергии различных длин волн, являясь, таким образом, селективными (избирательными). Каждый приемник излучения характеризуется своей кривой чувствительности к свету различных длин волн. Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является единица силы света — кандела (кд), определение которой дано выше (см. Введение). Определение световых единиц аналогично энергетическим.

Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью).

Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм = 1 кд × ср).

Светимость R определяется соотношением

Единица светимости — люмен на метр в квадрате (лм/м2).

Яркость Вj светящейся поверхности в некотором направлении j есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

Единица яркости — кандела на метр в квадрате (кд/м2).

Освещенность Е — величина, равная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Единила освещенности — люкс (лк): 1 лк — освещенность поверхности, на 1 м2 которой падает световой поток в 1 лм (1 лк= 1 лм/м2).