На главную v-garant.ru
Звуковые волны Тепловое излучение Оптическая пирометрия Механические гармонические колебания Дифференциальное уравнение вынужденных колебаний Энергия электромагнитных волн Переменный ток Разрешающая способность оптических приборов
Квантовая теория электропроводности металлов Металлы, диэлектрики и полупроводники Полупроводниковые диоды и триоды Элементы электронной оптики Методы наблюдения интерференции света Применение интерференции света

Физика Конспект лекций, лабораторные и задачи курсовых работ

Элементы электронной оптики

Область физики и техники, в которой изучаются вопросы формирования, фокусировки и отклонения пучков заряженных частиц и получения с их помощью изображений под действием электрических и магнитных полей в вакууме, называется электронной оптикой. Комбинируя различные электронно-оптические элементы — электронные линзы, зеркала, призмы, — создают электронно-оптические приборы, например электронно-лучевую трубку, электронный микроскоп, электронно-оптический преобразователь.

1. Электронные линзы представляют собой устройства, с помощью электрических и магнитных полей которых формируются и фокусируются пучки заряженных частиц. Существуют электростатические и магнитные линзы. В качестве электростатической линзы может быть использовано электрическое поле с вогнутыми и выпуклыми эквипотенциальными поверхностями, например в системах металлических электродов и диафрагм, обладающих осевой симметрией. На рис. 240 изображена простейшая собирающая электростатическая линза, где А — точка предмета, В — ее изображение, пунктиром изображены линии напряженности поля. Угловая дисперсия Решение задач по физике примеры

Магнитная линза обычно представляет собой соленоид с сильным магнитным полем, коаксиальным пучку электронов. Чтобы магнитное поле сконцентрировать на оси симметрии, соленоид помещают в железный кожух с узким внутренним кольцевым разрезом. Фотопроводимость полупроводников — увеличение электропроводности полупроводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hn ³ DE), могут совершаться перебросы электронов из валентной зоны в зону проводимости , что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.

Если расходящийся пучок заряженных частиц попадает в однородное магнитное поле, направленное вдоль оси пучка, то скорость каждой частицы можно разложить на два компонента: поперечный и продольный. Первый из них определит равномерное движение по окружности в плоскости, перпендикулярной направлению поля (см. § 115), второй — равномерное прямолинейное движение вдоль поля. Результирующее движение частицы будет происходить по спирали, ось которой совпадает с направлением поля. Для электронов, испускаемых под различными углами, нормальные составляющие скоростей будут различны, т. е. будут различны и радиусы описываемых ими спиралей. Однако отношение нормальных составляющих скорости к радиусам спиралей за период вращения (см. § 115) будет для всех электронов одинаково; следовательно, через один оборот все электроны сфокусируются в одной и той же точке на оси магнитной линзы.

«Преломление» электростатических и магнитных линз зависит от их фокусных расстояний, которые определяются устройством линзы, скоростью электронов, разностью потенциалов, приложенной к электродам (электростатическая линза), и индукцией магнитного поля (магнитная линза). Изменяя разность потенциалов или регулируя ток в катушке, можно изменить фокусное расстояние линз. Стигматическое изображение предметов в электронных линзах получается только для параксиальных электронных пучков. Как и в оптических системах (см. § 167), в электронно-оптических элементах также имеют место погрешности: сферическая аберрация, кома, дисторсия, астигматизм. При разбросе скоростей электронов в пучке наблюдается также и хроматическая аберрация. Аберрации ухудшают разрешающую способность и качество изображения, а поэтому в каждом конкретном случае необходимо их устранять.

2. Электронный микроскоп — устройство, предназначенное для получения изображения микрообъектов; в нем в отличие от оптического микроскопа вместо световых лучей используют ускоренные до больших энергий (30—100 кэВ и более) в условиях глубокого вакуума (примерно 0,1 мПа) электронные пучки, а вместо обычных линз — электронные линзы. В электронных микроскопах предметы рассматриваются либо в проходящем, либо в отраженном потоке электронов, поэтому различают просвечивающие и отражательные электронные микроскопы.

На рис. 241 приведена принципиальная схема просвечивающего электронного микроскопа. Электронный пучок, формируемый электронной пушкой 1, попадает в область действия конденсорной линзы 2, которая фокусирует на объекте 3 электронный пучок необходимого сечения и интенсивности. Пройдя объект и испытав в нем отклонения, электроны проходят вторую магнитную линзу — объектив 4 — и собираются ею в промежуточное изображение 5. Затем с помощью проекционной линзы 6 на флуоресцирующем экране достигается окончательное изображение 7.

Разрешающая способность электронного микроскопа ограничивается, с одной стороны, волновыми свойствами (дифракцией) электронов, с другой — аберрациями электронных линз. Согласно теории, разрешающая способность микроскопа пропорциональна длине волны, а так как длина волны применяемых электронных пучков (примерно 1 пм) в тысячи раз меньше длины волны световых лучей, то разрешение электронных микроскопов соответственно больше и составляет 0,01 — 0,0001 мкм (для оптических микроскопов приблизительно равно 0,2 — 0,3 мкм). С помощью электронных микроскопов можно добиться значительно больших увеличений (до 106 раз), что позволяет наблюдать детали структур размерами 0,1 нм.

3. Электронно-оптический преобразователь — это устройство, предназначенное для усиления яркости светового изображения и преобразования невидимого глазом изображения объекта (например, в инфракрасных или ультрафиолетовых лучах) в видимое. Схема простейшего электронно-оптического преобразователя приведена на рис. 242. Изображение предмета А с помощью оптической линзы 1 проецируется на фотокатод 2. Излучение от объекта вызывает с поверхности фотокатода фотоэлектронную эмиссию, пропорциональную распределению яркости проецированного на него изображения. Фотоэлектроны, ускоренные электрическим полем (3 — ускоряющий электрод), фокусируются с помощью электронной линзы 4 на флуоресцирующий экран 5, где электронное изображение преобразуется в световое (получается окончательное изображение А"). Электронная часть преобразователя находится в высоковакуумном сосуде 6.

Из оптики известно, что всякое увеличение изображения связано с уменьшением его освещенности. Достоинство электронно-оптических преобразователей заключается в том, что в них можно получить увеличенное изображение А" даже большей освещенности, чем сам предмет А, так как освещенность определяется энергией электронов, создающих изображение на флуоресцирующем экране. Разрешающая способность каскадных (нескольких последовательно соединенных) электронно-оптических преобразователей составляет 25—60 штрихов на 1 мм. Коэффициент преобразования — отношение излучаемого экраном светового потока к потоку, падающему от объекта на фотокатод, — у каскадных электронно-оптических преобразователей достигает »106. Недостаток этих приборов — малая разрешающая способность и довольно высокий темновой фон, что влияет на качество изображения.

Задачи

21.1. На плоскопараллельную стеклянную пластинку (n =1,5) толщиной 6 см падает под углом 35° луч света. Определить боковое смещение луча, прошедшего сквозь эту пластинку. [1,41 см]

21.2. Необходимо изготовить плосковыпуклую линзу с оптической силой 6 дптр. Определить радиус кривизны выпуклой поверхности линзы, если показатель преломления материала линзы равен 1,6. [10 см]

21.3. Определить, на какую высоту необходимо повесить лампочку мощностью 300 Вт, чтобы освещенность расположенной под ней доски была равна 50 лк. Наклон доски составляет 35°, а световая отдача лампочки равна 15 лм/Вт. Принять, что полный световой поток, испускаемый изотропным точечным источником света, Ф0 = 4pI. [2,42 м]

Элементы геометрической и электронной оптики . Полное отражение

Тонкие линзы. Изображение предметов с помощью линз Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой. Под световыми лучами понимают нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика, оставаясь приближенным методом построения изображений в оптических системах, позволяет разобрать основные явления, связанные с прохождением через них света, и является поэтому основой теории оптических приборов.

Рассмотрим параксиальные (приосевые) лучи, т. е. лучи, образующие с оптической осью малые углы

Аберрации (погрешности) оптических систем Рассматривая прохождение света через тонкие линзы, мы ограничивались параксиальными лучами. Показатель преломления материала линзы считали не зависящим от длины волны падающего света, а падающий свет — монохроматическим. Так как в реальных оптических системах эти условия не выполняются, то в них возникают искажения изображения, называемые аберрация» (или погрешностями).