Электротехника
Теория цепей
Методичка
Учебник по математике
Электроника
Физика
Матанализ
Контрольные
Начертательная геометрия
Конспекты
Лабораторные работы
Карта сайта

Физика Конспект лекций, лабораторные и задачи курсовых работ

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ. Как изменится температура медного провода, если по нему в течение 0,5 с пропускать ток плотностью 9 А/мм2, а 25% тепловой энергии отдается окружающей среде? Удельное сопротивление меди 1,7×10-8 Ом×м, плотность меди 8,9×103 кг/м3, удельная теплоемкость меди 380 Дж/(кг×К). Удельное сопротивление меди считать постоянным. Результат представьте в единицах СИ и округлите до сотых.

Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде

  (146.1) Эффект Комптона и его элементарная теория

где s – колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (146.1) рассмотрим в виде

 (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

  (146.3)

Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:

  (146.4)

(если ()>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1) ü+w2и=0, решением которого является функция и=А0cos(wt+j) (см. (140.1)). Таким образом, решение уравнения (146.1) в случае малых затуханий ()

  (146.5)

где

 (146.6)

— амплитуда затухающих колебаний, а А0 — начальная амплитуда. Зависимость (146.5) показана на рис. 208 сплошной линией, а зависимость (146.6) — штриховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затухающих колебаний с учетом формулы (146.4) равен

Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

  (146.7)

— логарифмическим декрементом затухания; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.