Электромагнитные колебания.
Электрический колебательный контур. Формула Томсона.
Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.
Рис.16.1. Электрический колебательный контур.
Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:
откуда, учитывая, что сила тока
, получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре
.
Если ввести обозначение
,
то полученное уравнение принимает вид:
.
Решением этого уравнения, как известно, является функция
.
Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):
Напряжение на конденсаторе:
,
где
- амплитуда напряжения.
Сила тока в контуре:
.
Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются взаимными превращениями энергий электрического и магнитного полей.
Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.
Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:
.
5.2. Свободные затухающие колебания. Добротность колебательного контура.
Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.
Рис.16.3. Колебательный RLC-контур.
Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:
![]()
или, поскольку
,
.
Введя обозначение
,
этому уравнению можно придать вид:
,
где
.
Решение полученного уравнения имеет вид:
где
Мы видим, что частота свободных затухающих колебаний ω′ меньше собственной частоты ω0. Подставив значения ω0 и β, получим:
Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания.
Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.
Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как:
.
Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина:
Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что
.
Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону
. Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть:
.
Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.
Энергия магнитного поля. Плотность энергии
Уравнения Максвелла. Сравнение основных теорем электростатики и магнитостатики. До сих пор мы изучали статические электрические и магнитные поля, то есть такие поля, которые создаются неподвижными зарядами и постоянными токами.
Второе уравнение Максвелла. В силу общности теоремы Гаусса применительно к любым векторным полям и отсутствия в природе «магнитных зарядов» (о чем уже говорилось ранее), второе уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для магнитной индукции:
Интегрирование производится по произвольной замкнутой поверхности S.
Явление электромагнитной индукции |