Магнитное поле соленоида Контур с током в неоднородном магнитном поле Магнитное поле в веществе Электромагнитные колебания Резонансные явления в колебательном контуре Масса и энергия связи ядра На главную v-garant.ru

Конспекты лекций по физике

Масса и энергия связи ядра

Измерения показывают, что масса любого ядра mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: mя < Zmp + Nmn. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.

Разность масс

Δ = Zmp + Nmn – mя

(16.4)

называется дефектом массы.

По дефекту массы можно определить с помощью формулы  E = mc2 энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра Eсв:

Eсв = Δ c2 = (Zmp + Nmn – mя)c2.

(16.5)

Энергия связи ядра равна той работе, которую нужно совершить, чтобы разделить образующие ядро нуклоны и удалить их друг от друга на такие расстояния, при которых они практически не взаимодействуют друг с другом.

Задача №7 относится к расчету выпрямителей переменного тока, собранных на полупроводниковых диодах. Подобные схемы широко применяются в различных электронных устройствах и приборах. При решении задач следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток Iдоп, на который рассчитан данный диод, и обратное напряжение Uобр, выдерживаемое диодом без пробоя в непроводящий период.

Стоячие волны – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Равенство (16.5) практически не нарушится, если заменить массу протона тр массой атома водорода тн, а массу ядра тя — массой атома mа. Действительно, если пренебречь сравнительно ничтожной энергией связи электронов с ядрами, указанная замена будет означать добавление к уменьшаемому и вычитаемому выражения, стоящего в фигурных скобках, одинаковой величины, равной Zme. Таким образом, формуле (16.5) можно придать вид

(16.6)

Удельная энергия связи. Энергия связи, приходящаяся на один нуклон, т. е. Есв / А, называется удельной энергией связи нуклонов в ядре. Эта величина характеризует меру прочности ядра: чем больше Есв / А, тем ядро прочнее. Удельная энергия связи зависит от массового числа А. График этой зависимости показан на рис.16.1. Сильнее всего связаны нуклоны в ядрах с массовыми числами порядка 50—60 (т. е. для элементов от Сг до Zn), Энергия связи для этих ядер достигает 8,7 МэВ/нуклон. С ростом А удельная энергия связи постепенно уменьшается; для самого тяжелого природного элемента— урана — она составляет 7,5 МэВ/нуклон.

Рис. 16.1. Удельная энергия связи ядер.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными. В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми. Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания для обеспечения устойчивости требуются дополнительные нейтроны.

Такая зависимость удельной энергии связи от массового числа делает энергетически возможными два процесса: 1) деление тяжелых ядер на несколько более легких ядер и 2) слияние (синтез) легких ядер в одно ядро. Оба процесса должны сопровождаться выделением большого количества энергии (см.ниже).

Тяжелые ядра не распадаются самопроизвольно на более легкие ядра с большей энергией связи, так как для того чтобы разделиться, тяжелое ядро должно пройти через ряд промежуточных состояний, энергия которых превышает энергию основного состояния ядра. Следовательно, для процесса деления ядру требуется дополнительная энергия (энергия активации), которая затем возвращается обратно, приплюсовываясь к энергии, выделяющейся при делении за счет изменения энергии связи. В обычных условиях ядру неоткуда взять энергию активации, вследствие чего тяжелые ядра не претерпевают спонтанного деления.

Ядерные силы

Основные свойства ядерных сил

Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы притяжения между нуклонами в сотни раз превосходят электромагнитные силы отталкивания. Перечислим отличительные особенности этих сил.

I) ядерные силы являются силами притяжения;

2) ядерные силы являются короткодействующими с радиусом действия ~10-13 см; На существенно меньших расстояниях притяжение нуклонов сменяется их отталкиванием;

ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;

ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов мало изменяется;

ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа ) только при условии параллельной ориентации их спинов;

ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

Взаимодействие нуклонов Квантовая физика учитывает квантовые свойства поля: всякому полю должна соответствовать определенная частица — квант поля, которая и является переносчиком взаимодействия. Одна из взаимодействующих частиц испускает квант поля, другая его поглощает. В этом и состоит механизм взаимодействия частиц. Существенно, что обмен частицами лежит в основе вообще всех взаимодействий частиц и является фундаментальным квантовым свойством природы (например, электромагнитные взаимодействия осуществляются путем обмена фотонами).

Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся: 1) α-распад, 2) β-распад (в том числе электронный захват), 3) γ-излучение ядер, 4) спонтанное деление тяжелых ядер, 5) протонная радиоактивность.

Эффект Мёссбауэра Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е*

Деление ядер Реакция деления ядра Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами, α-частицами, а также γ-фотонами


Явление электромагнитной индукции