Магнитное поле соленоида Контур с током в неоднородном магнитном поле Магнитное поле в веществе Электромагнитные колебания Резонансные явления в колебательном контуре Масса и энергия связи ядра На главную v-garant.ru

Конспекты лекций по физике

Теорема о циркуляции вектора магнитной индукции (закон полного тока)

Теорема о циркуляции вектора магнитной индукции в вакууме: циркуляция вектора магнитной индукции  по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых этим контуром, умноженной на . Иначе говоря,

,

где  – элементарное перемещение вдоль замкнутого контура l.

Докажем теорему для случая, когда ток I течет по прямому бесконечно длинному проводнику, а замкнутый контур l расположен в плоскости, перпендикулярной току (рис. 14).

Циркуляция вектора магнитной индукции  может быть записана в виде

,

где  – индукция магнитного поля прямого тока;  – проекция вектора элементарного перемещения  на направление вектора .

Из рис.  15 видно, что  с хорошей степенью точности. Таким образом,

 (1.10)

Если изменить направление тока на рис. 14 на противоположное, то изменится направление вектора  на противоположное в каждой точке пространства. Противоположной по знаку станет циркуляция вектора  для выбранного направления обхода контура. При этом в равенстве (1.10) ток следует считать отрицательным и подставлять его значение в формулу (1.10) со знаком минус. Таким образом, ток следует считать положительным, если направление обхода контура связано с направлением тока правилом правого винта. В противном случае ток надо считать отрицательным.

Если контур l не охватывает ток (рис. 16), то

.

В случае контура произвольной формы (рис. 17) элементарное перемещение  разложим на две составляющие, перпендикулярную  и параллельную  вектору магнитной индукции:

Так как  доказательство теоремы для случая контура произвольной формы сводится к рассмотренному выше случаю.

Можно показать, что теорема о циркуляции  (или закон полного тока) справедлива в общем случае для системы токов произвольной формы и произвольного замкнутого контура:

, (1.11)

где  – токи, охватываемые контуром, причем  берется с плюсом, если направление   и направление обхода контура связаны правилом правого винта, и с минусом в противном случае.

Если контур находится в проводящей среде, в которой существует упорядоченное движение зарядов, теорему (1.11) удобно представить в виде

,

где S – любая поверхность, ограниченная контуром l;  – проекция плотности тока на нормаль к элементу поверхности .

 

Применение теоремы о циркуляции вектора магнитной индукции. Магнитное поле внутри прямого проводника с током

В качестве примера применения теоремы о циркуляции вектора магнитной индукции для расчета индукции магнитного поля рассмотрим магнитное поле постоянного тока, текущего в бесконечно длинном прямом проводнике цилиндрической формы радиуса R. Замкнутый контур выберем в виде окружности радиуса r, лежащей в плоскости, перпендикулярной оси проводника, и с центром на этой оси (рис. 18).

Пусть направление обхода контура связано с направлением тока правилом правого винта. Из осевой симметрии следует, что во всех точках, равноудаленных от оси проводника с током, индукция магнитного поля одинакова. Проекция вектора магнитной индукции на направление элементарного перемещения совпадает по величине с магнитной индукцией во всех точках замкнутого контура.

Таким образом, для циркуляции вектора магнитной индукции получаем

, (1.12)

где  – проекция вектора магнитной индукции на направление элементарного перемещения .

Если , то по закону полного тока:

. (1.13)

Из сравнения (1.12) и (1.13) следует

,

что совпадает с ранее полученной формулой (1.6).

Если , в предположении равномерного распределения тока по сечению проводника, по закону полного тока

, (1.14)

где  – площадь, охватываемая контуром l; j – плотность тока. Из сравнения (1.12) и (1.14) следует

. (1.15)

На графике (рис. 19) показана зависимость индукции магнитного поля от расстояния до оси прямого проводника с током.

Рассмотрим полый проводник цилиндрической формы в виде трубы, вдоль стенки которой течет постоянный ток. Пусть R – радиус трубы. Замкнутый контур выберем также в форме окружности радиуса r с центром на оси проводника. Пусть . В этом случае контур не охватывает ток и

. (1.16)

Из сравнения (1.12) и (1.16) следует, что магнитное поле внутри полого проводника с током отсутствует. На рис. 20 представлена зависимость величины индукции магнитного поля в некоторой точке от ее расстояния до оси прямого полого проводника с током.


Явление электромагнитной индукции