ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА

Электроника
ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
Генератор сигналов специальной формы
Изучение статических характеристик
полевых транзисторов
Основные параметры полевого транзистора
Изучение оптоэлектронных приборов
оптопара (оптрон)
Вольтамперная характеристика
Классификация изделий микроэлектроники.
Эпитаксия
Нанесение тонких пленок.
Полевой транзистор с изолированным затвором
ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ
Фоторезисторы

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ИССЛЕДОВАНИЕ ТРЕХФАЗНЫХ ЦЕПЕЙ
Переходные процессы в линейных цепях первого порядка
Переходные процессы в RLC цепях.
Спектральное представление периодических процессов
Исследование характеристик линейных четырехполюсников
Аппаратно-программный комплекс PClab – 2000
Методика выполнения лабораторного практикума
в лаборатории электротехники
Исследование неразветвленной и разветвленной
электрических цепей постоянного тока
Исследование нелинейных цепей постоянного тока
Переходные процессы в электрических цепях

Изучение статических характеристик полевых транзисторов 

Основными элементами, применяемыми для усиления мощности электрических сигналов, являются транзисторы. Они выпускаются в виде отдельных элементов или входят в состав интегральных микросхем. Транзисторы можно разделить на два класса – биполярные и униполярные (полевые). В работе биполярных транзисторов принимают участие как положительные, так и отрицательные носители заряда, отсюда и термин “биполярный”. В униполярных транзисторах ток обусловлен только свободными основными носителями в проводящем канале и влияние малого количества неосновных носителей несущественно, отсюда и термин “униполярный”. Полевые транзисторы бывают двух видов: с управляющим р–n-переходом и с изолированным затвором. В настоящем пособии будут рассмотрены полевые транзисторы малой мощности с управляющим р–n-переходом.

В полевом транзисторе с управляющим p–n-переходом используется два типа электрических контактов: выпрямляющие и омические. Для понимания принципа действия полевого транзистора необходим базовый уровень знаний по этим вопросам. В кратком виде основные вопросы теории p–n-перехода описаны в методических указаниях: “Изучение статических характеристик полупроводниковых приборов”, а более подробно в учебниках [1‑3] рекомендательного списка литературы. Можно использовать конспекты лекций по курсу “Твердотельная электроника”. Краткие основы теории омических контактов приведены в следующей главе. Более подробно они изложены в [4].

ОМИЧЕСКИЕ КОНТАКТЫ

С помощью омических невыпрямляющих контактов происходит электрическое соединение полупроводников с металлическими проводниками. От качества этих контактов в значительной степени зависят параметры и характеристики приборов, а также их надежность и срок службы. Основные требования комическим контактам: 1) при прямом смещении они должны обеспечивать инжекцию основных носителей в полупроводник; 2) при обратном смещении препятствовать инжекции неосновных носителей в полупроводник; 3) иметь минимальное электрическое сопротивление; 4) иметь линейную вольт-амперную характеристику (ВАХ).

Эти условия выполняются при правильном подборе пары металл – полупроводник. Зонная диаграмма контакта металл - полупроводник n-типа приведена на рис. 1. Для этой пары должно выполняться соот

ношение Рм<Рn, где Рм – термодинамическая (внутренняя) работа выхода электрона из металла, а Рn – из полупроводника n-типа. В такой паре энергия электронов в металле больше, чем в полупроводнике, и при установлении термодинамического равновесия часть электронов из металла перетекает в полупроводник. Уровень Ферми WF в металле и полупроводнике выравнивается. Вблизи металлургической границы со стороны металла возникает тонкий слой dм, обедненный электронами (т.е. заряженный положительно), а со стороны полупроводника – слой dn, обогащенный электронами. Контактное электрическое поле Ек направлено из металла в полупроводник. Оно приводит к изгибу уровней энергии дна зоны проводимости Wc и верха валентной зоны Wc в области dn. Однако напряженность контактного поля на несколько порядков меньше внутриатомной, поэтому ширина запрещенной зоны DW и энергия сродства к электрону Рс остаются постоянными. Поле Ек способствует электрическому дрейфу основных носителей электронов из полупроводника в металл и препятствует дрейфу неосновных носителей дырок. В состоянии термодинамического равновесия дрейфовая InE и диффузионная InD, составляющие электронного тока через металлургическую границу, уравновешивают друг друга.

Большая концентрация электронов в области контакта обеспечивает его высокую проводимость при любой полярности внешнего смещения. Потенциальный барьер j = qy препятствует инжекции неосновных носителей – дырок.


Зонная диаграмма полупроводника n - типа с двумя омическими контактами при внешнем смещении приведена на рис.2. Проводимость металлов на несколько порядков больше проводимости полупроводников, поэтому практически все напряжение U будет приложено к полупроводнику n - типа, потенциал вдоль него изменяется линейно, также изменяется энергия электронов, и уровень Ферми имеет наклон. Левый омический контакт оказывается прямосмещенным, его толщина dпр становится меньше dn, и через небольшой горбик электроны из металла инжектируются в полупроводник n-типа, затем они скатываются вниз по наклону дна зоны проводимости, достигают обогащенной электронами зоны правого обратносмещенного контакта и через металлургическую границу попадают (стекают) в правый металлический контакт, откуда уходят во внешнюю цепь. Дырки из правого контакта не могут преодолеть потенциальный барьер и инжектироваться в полупроводник. Неосновные носители практически не участвуют в проводимости полупроводника.


Зонная диаграмма контакта металл – полупроводник р-типа в состоянии термодинамического равновесия приведена на рис.3. Для этой пары должно соблюдаться условие Рм >Рр, тогда при установлении термодинамического равновесия Eк направлено из полупроводника в металл, вблизи металлургической границы возникает обогащенная дырками область, а неосновные носители – электроны находятся в потенциальной яме глубиной j = qy и не могут инжектироваться в металл.


Изготовление омических контактов связано с большими трудностями. Концентрация дефектов и примесей на поверхности полупроводников существенно выше, чем в глубине монокристалла. На поверхности образуются обедненные основными носителями области и слои с инверсным типом проводимости, что существенно ухудшает свойства омических контактов. Для устранения этих недостатков создаются омические М–n+–n или М–р+–р контакты. Зонная диаграмма контакта М–n+–n в состоянии термодинамического равновесия приведена на рис.4. В связи с тем что металл контактирует с вырожденным полупроводником n+-типа, поверхностные дефекты не оказывают существенного влияния на качество контакта, а граница раздела вырожденный полупроводник n+ – низколегированный полупроводник n-типа находится в глубине монокристалла, где концентрация примесей и дефектов меньше, чем на поверхности. Аналогично изготавливают контакт М–р+–р.

Поможем вам купить диплом в Липецке у нас в компании. | Рекомендуем вам заказать и купить диплом Волжский на сайте без хлопот, звоните нам.