ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА

Электроника
ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
Генератор сигналов специальной формы
Изучение статических характеристик
полевых транзисторов
Основные параметры полевого транзистора
Изучение оптоэлектронных приборов
оптопара (оптрон)
Вольтамперная характеристика
Классификация изделий микроэлектроники.
Эпитаксия
Нанесение тонких пленок.
Полевой транзистор с изолированным затвором
ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ
Фоторезисторы

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ИССЛЕДОВАНИЕ ТРЕХФАЗНЫХ ЦЕПЕЙ
Переходные процессы в линейных цепях первого порядка
Переходные процессы в RLC цепях.
Спектральное представление периодических процессов
Исследование характеристик линейных четырехполюсников
Аппаратно-программный комплекс PClab – 2000
Методика выполнения лабораторного практикума
в лаборатории электротехники
Исследование неразветвленной и разветвленной
электрических цепей постоянного тока
Исследование нелинейных цепей постоянного тока
Переходные процессы в электрических цепях

Изучение оптоэлектронных приборов

Цель работы – ознакомление с принципом действия излучательных диодов, диодных и транзисторных оптронов. Снятие вольтамперных и световых характеристик светодиодов, расчет мощности излучения и КПД. Снятие проходных характеристик оптронов, определение коэффициента передачи по току.

Выполнение лабораторной работы рассчитано на четырехчасовое занятие с предварительной домашней подготовкой. Выполнение лабораторной работы может предшествовать изучению соответствующих разделов лекционного курса. В этом случае они изучаются самостоятельно с использованием рекомендованных учебников и методических изданий по курсу “Твердотельная электроника”.

СВЕТОДИОДЫ. ПРИНЦИП ДЕЙСТВИЯ

Светоизлучающими диодами (светодиодами) называются полупроводниковые приборы с p–n-переходом, предназначенные для преобразования электрической энергии в энергию некогерентного оптического излучения. В основе принципа их действия лежит рекомбинационное излучение – излучение квантов света (фотонов) при рекомбинации пар электрон – дырка. Для интенсивной рекомбинации необходимо одновременно иметь высокую плотность электронов в зоне проводимости и высокую плотность свободных уровней (дырок) в валентной зоне. Такие условия создаются при высоком уровне инжекции электронов в дырочный полупроводник.

Зонная диаграмма прямосмещенного p–n-перехода с эмиттером электронов представлена на рис. 1. При прямом смещении p–n-перехода внешнее поле Eвн (возникшее за счет падения части напряжения источника питания U на p–n-переходе) частично компенсирует контактное Eк. Энергия электронов в области эмиттера n+-типа увеличивается, уровень Ферми WF поднимается, высота потенциального барьера уменьшается qe(φ0-U) и наблюдается высокий уровень инжекции электронов в базу р-типа. Электроны в базе являются неосновными носителями и создают неравновесный заряд, сосредоточенный вблизи границы p–n-перехода на расстоянии порядка средней длины диффузии электронов в базе Ln. Для сохранения электрической нейтральности из глубины базы подтягиваются дырки. Таким образом, вблизи границы p–n-перехода создается избыточная концентрация электронов и дырок, что приводит к их интенсивной рекомбинации с испусканием квантов света hν.


Однако через прямосмещенный p–n-переход диффундируют не только электроны, но и дырки из p-области. Это приводит к увеличению рекомбинации электронов и дырок в p–n-переходе и в эмиттере и снижению концентрации электронов в базе. Кванты света, возникающие в глубине полупроводника, частично поглощаются в полупроводнике, что снижает квантовый выход. Поэтому необходимо уменьшить дырочный ток через p–n-переход, используя эмиттеры с коэффициентом электронной инжекции γn = In/(In+Ip), где In – электронный, Ip – дырочный ток, близким к единице.

Идеальным эмиттером (γ = 1) является гетеропереход. Зонная диаграмма гетероперехода с эмиттером электронов в состоянии термодинамического равновесия приведена на рис. 2. Гетеропереход образуется между двумя полупроводниками, имеющими разные электрофизические свойства: разную энергию сродства к электрону Pc, ширину запрещенной зоны DW и диэлектрическую проницаемость ε. Для изготовления гетероперехода необходимо правильно подобрать пару контактирующих материалов. Они должны иметь кристаллическую решетку с одинаковой структурой и близкими постоянными кристаллической решетки а (отличие не более 0.5%) и коэффициентами температурного расширения α. Материал эмиттера по сравнению с материалом базы должен быть более широкозонным и иметь меньшую энергию сродства к электрону. Поэтому гетеропереход с инжекцией электронов

имеет DWp < DWn, Рср > Рсn и εp ≠ εn как показано на рис. 2. При этом уровни энергии Wc и Wv имеют разрыв на металлургической границе (непрерывная вертикальная линия), а потенциальные барьеры для электронов yn и дырок yp оказываются разными. Разница в высоте потенциальных барьеров Δψ = yp–yn = DWn–DWp.

В прямо смещенном гетеропереходе (рис. 3) при высоком уровне инжекции электронов, за счет Δψ дырочный ток практически равен нулю и γn = 1, что характерно для идеальных эмиттеров. В базе вблизи гетероперехода создастся большая (по сравнению с гомопереходом) инверсная заселенность энергетических уровней и квантовый выход инжекционной электролюминесценции повышается. Поэтому в современных светодиодах, как правило, используются гетеропереходы.

Излучательные квантовые переходы в светодиодах происходят спонтанно, независимо друг от друга и в разные моменты времени, поэтому излучение является некогерентным. Спектр излучения светодиодов является широким.

Проститутки Новосибирска на сайте. | Эскорт - фешенебельная услуга среди верных завсегдатаев проститутокСтерлитамака http://sterlitamak.prostitutki.black/eskort/, точно заставит понять любого покупателя, как здорово можно гулять периодически с близкими корефанами в джакузи.